Source code for ogcore.aggregates

"""
-------------------------------------------------------------------------------
Functions to compute economic aggregates.
-------------------------------------------------------------------------------
"""

# Packages
import numpy as np
from ogcore import tax, pensions

"""
-------------------------------------------------------------------------------
    Functions
-------------------------------------------------------------------------------
"""


[docs] def get_L(n, p, method): r""" Calculate aggregate labor supply. .. math:: L_{t} = \sum_{s=E}^{E+S}\sum_{j=0}^{J}\omega_{s,t}\lambda_{j}n_{j,s,t} Args: n (Numpy array): labor supply of households p (OG-Core Specifications object): model parameters method (str): adjusts calculation dimensions based on 'SS' or 'TPI' Returns: L (array_like): aggregate labor supply """ if method == "SS": L_presum = ( np.squeeze(p.e[-1, :, :]) * np.transpose(p.omega_SS * p.lambdas) * n ) L = L_presum.sum() elif method == "TPI": L_presum = (n * (p.e * np.squeeze(p.lambdas))) * np.tile( np.reshape(p.omega[: p.T, :], (p.T, p.S, 1)), (1, 1, p.J) ) L = L_presum.sum(1).sum(1) return L
[docs] def get_I(b_splus1, K_p1, K, p, method): r""" Calculate aggregate investment. .. math:: I_{t} = (1 + g_{n,t+1})e^{g_{y}}(K_{t+1} - \sum_{s=E}^{E+S} \sum_{j=0}^{J}\omega_{s+1,t}i_{s+1,t}\lambda_{j}b_{j,s+1,t+1} \ (1+ g_{n,t+1})) - (1 - \delta)K_{t} Args: b_splus1 (Numpy array): savings of households K_p1 (array_like): aggregate capital, one period ahead K (array_like): aggregate capital p (OG-Core Specifications object): model parameters method (str): adjusts calculation dimensions based on 'SS' or 'TPI', also compute total investment (not net of immigrants) Returns: aggI (array_like): aggregate investment """ if method == "SS": omega_extended = np.append(p.omega_SS[1:], [0.0]) imm_extended = np.append(p.imm_rates[-1, 1:], [0.0]) part2 = ( ( b_splus1 * np.transpose((omega_extended * imm_extended) * p.lambdas) ).sum() ) / (1 + p.g_n_ss) aggI = (1 + p.g_n_ss) * np.exp(p.g_y) * (K_p1 - part2) - ( 1.0 - p.delta ) * K elif method == "TPI": omega_shift = np.append(p.omega[: p.T, 1:], np.zeros((p.T, 1)), axis=1) imm_shift = np.append( p.imm_rates[: p.T, 1:], np.zeros((p.T, 1)), axis=1 ) part2 = ( ( (b_splus1 * np.squeeze(p.lambdas)) * np.tile( np.reshape(imm_shift * omega_shift, (p.T, p.S, 1)), (1, 1, p.J), ) ) .sum(1) .sum(1) ) / (1 + np.squeeze(np.hstack((p.g_n[1 : p.T], p.g_n_ss)))) aggI = ( 1 + np.squeeze(np.hstack((p.g_n[1 : p.T], p.g_n_ss))) ) * np.exp(p.g_y) * (K_p1 - part2) - (1.0 - p.delta) * K elif method == "total_ss": aggI = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * K elif method == "total_tpi": aggI = (1 + p.g_n[1 : p.T + 1]) * np.exp(p.g_y) * K_p1 - ( 1.0 - p.delta ) * K return aggI
[docs] def get_B(b, p, method, preTP): r""" Calculate aggregate savings .. math:: B_{t} = \sum_{s=E}^{E+S}\sum_{j=0}^{J}\omega_{s,t}\lambda_{j}b_{j,s,t} Args: b (Numpy array): savings of households p (OG-Core Specifications object): model parameters method (str): adjusts calculation dimensions based on 'SS' or 'TPI' preTP (bool): whether calculation is for the pre-time path period amount of savings. If True, then need to use `omega_S_preTP`. Returns: B (array_like): aggregate supply of savings """ if method == "SS": if preTP: part1 = b * np.transpose(p.omega_S_preTP * p.lambdas) omega_extended = np.append(p.omega_S_preTP[1:], [0.0]) imm_extended = np.append(p.imm_rates[0, 1:], [0.0]) pop_growth_rate = p.g_n[0] else: part1 = b * np.transpose(p.omega_SS * p.lambdas) omega_extended = np.append(p.omega_SS[1:], [0.0]) imm_extended = np.append(p.imm_rates[-1, 1:], [0.0]) pop_growth_rate = p.g_n_ss part2 = b * np.transpose(omega_extended * imm_extended * p.lambdas) B_presum = part1 + part2 B = B_presum.sum() B /= 1.0 + pop_growth_rate elif method == "TPI": part1 = (b * np.squeeze(p.lambdas)) * np.tile( np.reshape(p.omega[: p.T, :], (p.T, p.S, 1)), (1, 1, p.J) ) omega_shift = np.append(p.omega[: p.T, 1:], np.zeros((p.T, 1)), axis=1) imm_shift = np.append( p.imm_rates[: p.T, 1:], np.zeros((p.T, 1)), axis=1 ) part2 = (b * np.squeeze(p.lambdas)) * np.tile( np.reshape(imm_shift * omega_shift, (p.T, p.S, 1)), (1, 1, p.J) ) B_presum = part1 + part2 B = B_presum.sum(1).sum(1) B /= 1.0 + np.hstack((p.g_n[1 : p.T], p.g_n_ss)) return B
[docs] def get_BQ(r, b_splus1, j, p, method, preTP): r""" Calculation of aggregate bequests. If `use_zeta` is False, then computes aggregate bequests within each lifetime income group. .. math:: BQ_{t} = \sum_{s=E}^{E+S}\sum_{j=0}^{J}\rho_{s}\omega_{s,t} \lambda_{j}b_{j,s+1,1} Args: r (array_like): the real interest rate b_splus1 (numpy array): household savings one period ahead j (int): index of lifetime income group p (OG-Core Specifications object): model parameters method (str): adjusts calculation dimensions based on SS or TPI preTP (bool): whether calculation is for the pre-time path period amount of savings. If True, then need to use `omega_S_preTP`. Returns: BQ (array_like): aggregate bequests, overall or by lifetime income group, depending on `use_zeta` value. """ if method == "SS": if preTP: omega = p.omega_S_preTP pop_growth_rate = p.g_n[0] rho = p.rho[0, :] else: omega = p.omega_SS pop_growth_rate = p.g_n_ss rho = p.rho[-1, :] if j is not None: BQ_presum = omega * rho * b_splus1 * p.lambdas[j] else: BQ_presum = np.transpose(omega * (rho * p.lambdas)) * b_splus1 BQ = BQ_presum.sum(0) BQ *= (1.0 + r) / (1.0 + pop_growth_rate) elif method == "TPI": pop = np.append( p.omega_S_preTP.reshape(1, p.S), p.omega[: p.T - 1, :], axis=0 ) rho = np.append( p.rho[0, :].reshape(1, p.S), p.rho[: p.T - 1, :], axis=0 ) if j is not None: BQ_presum = (b_splus1 * p.lambdas[j]) * (pop * rho) BQ = BQ_presum.sum(1) BQ *= (1.0 + r) / (1.0 + p.g_n[: p.T]) else: BQ_presum = (b_splus1 * np.squeeze(p.lambdas)) * np.tile( np.reshape(pop * rho, (p.T, p.S, 1)), (1, 1, p.J) ) BQ = BQ_presum.sum(1) BQ *= np.tile( np.reshape((1.0 + r) / (1.0 + p.g_n[: p.T]), (p.T, 1)), (1, p.J), ) if p.use_zeta: if method == "SS": BQ = BQ.sum() else: if not j: BQ = BQ.sum(1) return BQ
[docs] def get_C(c, p, method): r""" Calculation of aggregate consumption. Set up to only take one consumption good at a time. This function is called in a loop to get consumption for all goods. .. math:: C_{t} = \sum_{s=E}^{E+S}\sum_{j=0}^{J}\omega_{s,t} \lambda_{j}c_{j,s,t} Args: c (Numpy array): consumption of households p (OG-Core Specifications object): model parameters method (str): adjusts calculation dimensions based on 'SS' or 'TPI' Returns: C (array_like): aggregate consumption """ if method == "SS": aggC = ( (c * np.transpose(p.omega_SS * p.lambdas).reshape(1, p.S, p.J)) .sum(-1) .sum(-1) ) elif method == "TPI": aggC = ( ( (c * np.squeeze(p.lambdas)) * np.tile( np.reshape(p.omega[: p.T, :], (p.T, p.S, 1)), (1, 1, p.J) ) ) .sum(-1) .sum(-1) ) return aggC
[docs] def revenue( r, w, b, n, bq, c, Y, L, K, p_m, factor, ubi, theta, etr_params, e, p, m, method, ): r""" Calculate aggregate tax revenue. .. math:: R_{t} = \sum_{s=E}^{E+S}\sum_{j=0}^{J}\omega_{s,t}\lambda_{j} (T_{j,s,t} + \tau^{p}_{t}w_{t}e_{j,s}n_{j,s,t} - \theta_{j} w_{t} + \tau^{bq}bq_{j,s,t} + \tau^{c}_{s,t}c_{j,s,t} + \tau^{w}_{t}b_{j,s,t}) + \sum_{m=1}^{M}\tau^{b}_{m,t}(Y_{m,t}-w_{t}L_{m,t}) - \tau^{b}_{m,t}\delta^{\tau}_{m,t}K^{\tau}_{m,t} Args: r (array_like): the real interest rate w (array_like): the real wage rate b (Numpy array): household savings n (Numpy array): household labor supply bq (Numpy array): household bequests received c (Numpy array): household consumption Y (array_like): aggregate output L (array_like): aggregate labor K (array_like): aggregate capital p_m (array_like): output prices factor (scalar): scaling factor converting model units to dollars ubi (array_like): universal basic income household distributions theta (Numpy array): social security replacement rate for each lifetime income group etr_params (list): list of parameters of the effective tax rate functions e (Numpy array): effective labor units p (OG-Core Specifications object): model parameters method (str): adjusts calculation dimensions based on 'SS' or 'TPI' Returns: total_tax_revenue (array_like): aggregate tax revenue iit_payroll_tax_revenue (array_like): aggregate income and payroll tax revenue agg_pension_outlays (array_like): aggregate outlays for gov't pensions UBI_outlays (array_like): aggregate universal basic income (UBI) outlays bequest_tax_revenue (array_like): aggregate bequest tax revenue wealth_tax_revenue (array_like): aggregate wealth tax revenue cons_tax_revenue (array_like): aggregate consumption tax revenue business_tax_revenue (array_like): aggregate business tax revenue payroll_tax_revenue (array_like): aggregate payroll tax revenue iit_tax_revenue (array_like): aggregate income tax revenue """ inc_pay_tax_liab = tax.income_tax_liab( r, w, b, n, factor, 0, None, method, e, etr_params, p ) pension_benefits = pensions.pension_amount( r, w, n, Y, theta, 0, None, False, method, e, factor, p ) bq_tax_liab = tax.bequest_tax_liab(r, b, bq, 0, None, method, p) w_tax_liab = tax.wealth_tax_liab(r, b, 0, None, method, p) if method == "SS": p_i = np.dot(p.io_matrix, p_m) pop_weights = np.transpose(p.omega_SS * p.lambdas) iit_payroll_tax_revenue = (inc_pay_tax_liab * pop_weights).sum() agg_pension_outlays = (pension_benefits * pop_weights).sum() UBI_outlays = (ubi * pop_weights).sum() wealth_tax_revenue = (w_tax_liab * pop_weights).sum() bequest_tax_revenue = (bq_tax_liab * pop_weights).sum() cons_tax_revenue = ( ((p.tau_c[-1, :] * p_i).reshape(p.I, 1, 1) * c).sum(axis=0) * pop_weights ).sum() payroll_tax_revenue = p.frac_tax_payroll[-1] * iit_payroll_tax_revenue elif method == "TPI": p_i = ( np.tile(p.io_matrix.reshape(1, p.I, p.M), (p.T, 1, 1)) * np.tile(p_m[: p.T, :].reshape(p.T, 1, p.M), (1, p.I, 1)) ).sum(axis=2) pop_weights = np.squeeze(p.lambdas) * np.tile( np.reshape(p.omega[: p.T, :], (p.T, p.S, 1)), (1, 1, p.J) ) iit_payroll_tax_revenue = ( (inc_pay_tax_liab * pop_weights).sum(1).sum(1) ) agg_pension_outlays = (pension_benefits * pop_weights).sum(1).sum(1) UBI_outlays = (ubi[: p.T, :, :] * pop_weights).sum(1).sum(1) wealth_tax_revenue = (w_tax_liab * pop_weights).sum(1).sum(1) bequest_tax_revenue = (bq_tax_liab * pop_weights).sum(1).sum(1) cons_tax_revenue = ( ( ((p.tau_c[: p.T, :] * p_i).reshape(p.T, p.I, 1, 1) * c).sum( axis=1 ) * pop_weights ) .sum(1) .sum(1) ) payroll_tax_revenue = ( p.frac_tax_payroll[: p.T] * iit_payroll_tax_revenue ) business_tax_revenue = tax.get_biz_tax(w, Y, L, K, p_m, p, m, method).sum( -1 ) iit_revenue = iit_payroll_tax_revenue - payroll_tax_revenue total_tax_revenue = ( iit_payroll_tax_revenue + wealth_tax_revenue + bequest_tax_revenue + cons_tax_revenue + business_tax_revenue ) return ( total_tax_revenue, iit_payroll_tax_revenue, agg_pension_outlays, UBI_outlays, bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue, business_tax_revenue, payroll_tax_revenue, iit_revenue, )
[docs] def get_r_p(r, r_gov, p_m, K_vec, K_g, D, MPKg_vec, p, method): r""" Compute the interest rate on the household's portfolio of assets, a mix of government debt and private equity. .. math:: r_{p,t} = \frac{r_{gov,t}D_{t} + r_{K,t}K_{t}}{D_{t} + K_{t}} Args: r (array_like): the real interest rate r_gov (array_like): the real interest rate on government debt p_m (array_like): good prices K_vec (array_like): aggregate capital demand from each industry K_g (array_like): aggregate public capital D (array_like): aggregate government debt MPKg_vec (array_like): marginal product of government capital for each industry p (OG-Core Specifications object): model parameters method (str): adjusts calculation dimensions based on 'SS' or 'TPI' Returns: r_p (array_like): the real interest rate on the household portfolio """ if method == "SS": tau_b = p.tau_b[-1, :] T = 1 else: T = p.T tau_b = p.tau_b[: p.T, :].reshape((p.T, p.M)) K_g = K_g.reshape((p.T, 1)) r = r.reshape((p.T, 1)) r_gov = r_gov.reshape((p.T, 1)) D = D.reshape((p.T, 1)) p_m = p_m.reshape((p.T, p.M)) MPKg_vec = MPKg_vec.reshape((p.T, p.M)) K_vec = K_vec.reshape((p.T, p.M)) r_K = r + ( ((1 - tau_b) * p_m * MPKg_vec * K_g).sum(axis=-1).reshape((T, 1)) / K_vec.sum(axis=-1).reshape((T, 1)) ) r_p = ((r_gov * D) + (r_K * K_vec.sum(axis=-1).reshape((T, 1)))) / ( D + K_vec.sum(axis=-1).reshape((T, 1)) ) return np.squeeze(r_p)
[docs] def resource_constraint(Y, C, G, I_d, I_g, net_capital_flows): r""" Compute the error in the resource constraint. .. math:: \text{rc_error} = \hat{Y}_t - \hat{C}_t - \Bigl(e^{g_y}\bigl[1 + \tilde{g}_{n,t+1}\bigr]\hat{K}^d_{t+1} - \hat{K}^d_t\Bigr) - \delta\hat{K}_t - \hat{G}_t - \hat{I}_{g,t} - \text{net capital outflows}_t Args: Y (array_like): aggregate output by industry C (array_like): aggregate consumption by industry G (array_like): aggregate government spending by industry I_d (array_like): aggregate private investment from domestic households I_g (array_like): investment in government capital net_capital_flows (array_like): net capital outflows Returns: rc_error (array_like): error in the resource constraint """ rc_error = Y - C - I_d - I_g - G - net_capital_flows return rc_error
def get_capital_outflows(r, K_f, new_borrowing_f, debt_service_f, p): r""" Compute net capital outflows for open economy parameterizations .. math:: \text{net capital flows} &= r_{p,t}\hat{K}^f_t ... \\ &\quad\quad + \Bigl(e^{g_y}\bigl[1 + \tilde{g}_{n,t+1}\bigr]\hat{D}^f_{t+1} - \hat{D}^f_t\Bigr) - r_{p,t}\hat{D}^f_t \quad\forall t Args: r (array_like): the real interest rate K_f (array_like): aggregate capital that is foreign-owned new_borrowing_f (array_like): new borrowing of government debt from foreign investors debt_service_f (array_like): interest payments on government debt owned by foreigners p (OG-Core Specifications object): model parameters Returns: new_flow (array_like): net capital outflows """ net_flow = (r + p.delta) * K_f - new_borrowing_f + debt_service_f return net_flow
[docs] def get_K_splits(B, K_demand_open, D_d, zeta_K): r""" Returns total domestic capital as well as amounts of domestic capital held by domestic and foreign investors separately. .. math:: \begin{split} \hat{K}_{t} &= \hat{K}^{f}_{t} + \hat{K}^{d}_{t}\\ \hat{K}^{d}_{t} &= \hat{B}_{t} + \hat{D}^{d}_{t}\\ \hat{K}^{f}_{t} &= \zeta_{D}\left(\hat{K}^{open}_{t} - K^{d}_{t}\right) \end{split} Args: B (array_like): aggregate savings by domestic households K_demand_open (array_like): capital demand at the world interest rate D_d (array_like): governmet debt held by domestic households zeta_K (array_like): fraction of excess capital demand satisfied by foreign investors Returns: (tuple): series of capital stocks: * K (array_like): total capital * K_d (array_like): capital held by domestic households * K_f (array_like): capital held by foreign households """ K_d = B - D_d if np.any(K_d < 0): print( "K_d has negative elements. Setting them " + "positive to prevent NAN." ) K_d = np.fmax(K_d, 0.05 * B) K_f = zeta_K * (K_demand_open - B + D_d) K = K_f + K_d return K, K_d, K_f
[docs] def get_ptilde(p_i, tau_c, alpha_c, method="SS"): r""" Calculate price of composite good. .. math:: \tilde{p}_{t} = \prod_{i=1}^{I} \left(\frac{(1 + \tau^{c}_{i,t})p_{i,j}}{\alpha_{i,j}}\right)^{\alpha_{i,j}} Args: p_i (array_like): prices for consumption good i tau_c (array_like): consumption taxes on good i alpha_c (array_like): consumption share parameters Returns: p_tilde (array_like): tax-inclusive price of composite good """ if method == "SS": p_tilde = np.prod((((1 + tau_c) * p_i) / alpha_c) ** alpha_c) else: # TPI case alpha_c = alpha_c.reshape(1, alpha_c.shape[0]) p_tilde = np.prod((((1 + tau_c) * p_i) / alpha_c) ** alpha_c, axis=1) return p_tilde